分类 wifidog分析 下的文章

wifidog自带http服务器wiLighttpd1.4.20源码分析之状态机(4) 错误处理和连接关闭

Lighttpd所要处理的错误分为两种。一种是http协议规定的错误,如404错误。另一种就是服务器运行过程中的错误,如write错误。

  对于http协议规定的错误,lighttpd返回相应的错误提示文件。其实对于lighttpd而言,这不算错误。在返回错误提示文件后,相当于顺利的完成了一次请求,只是结果和客户端想要的不一样而已。

对于服务器运行中的错误,状态机会直接进入CON_STATE_ERROR状态。大部分的情况下,这种错误都是由客户端提前断开连接所造成的。比如你不停的刷新页面,在你刷新的时候,前一次的连接没有完成,但被浏览器强行断开,这时,服务器就会出现连接错误。对于服务器而言,刷新前后的两个连接是不相干的。因此,服务器在接收后一个连接的时候仍然会继续处理前一次的连接。而这时前一次的连接已经断开,这就产生了连接错误。   

进入CON_STATE_ERROR状态后,如果前面的处理已经得到了结果。也就是http_status不为空。那么调用plugins_call_handle_request_done告诉插件请求处理结束。

  /*
  * even if the connection was drop we still have to write it to the
  * access log
  */
   if (con->http_status)
   {
        plugins_call_handle_request_done(srv, con);
   }

接着,如果使用了ssl,关闭ssl连接。关闭ssl连接的代码很长,但大部分都是错误处理。再朝后,如果连接模式不是DIRECT,调用plugins_call_handle_connection_close告诉插件连接已经关闭。到此,如果连接没有设置keep_alive,那么关闭连接并做一些清理工作之后就直接结束状态机的运行了。
如果设置了keep_alive,此时可能是服务器首先关闭连接的。调用shutdown关闭连接的读和写。如果关闭没有出错,状态机进入CON_STATE_CLOSE状态。

   /*
    * close the connection
    */
   if ((con->keep_alive == 1) && (0 == shutdown(con->fd, SHUT_WR)))
   {
       con->close_timeout_ts = srv->cur_ts;
       connection_set_state(srv, con, CON_STATE_CLOSE);、
       if (srv->srvconf.log_state_handling)
       {
           log_error_write(srv, __FILE__, __LINE__, "sd",
                           "shutdown for fd", con->fd);
       }
   }

上面的代码中有这么一句:con->close_timeout_ts = srv->cur_ts;将close_timeout_ts的值设置为当前时间。这时干吗用的?不着急,继续完后走。
进入CON_STATE_ERROR状态之后,如果是keep_alive,且缓冲区中有数据还没读,那么把这些数据读出来然后直接丢弃。如果没有数据可读,直接设置close_time_ts为0。接着执行下面的代码:

  if (srv->cur_ts - con->close_timeout_ts > 1)
   {
       connection_close(srv, con);
       if (srv->srvconf.log_state_handling)
       {
           log_error_write(srv, __FILE__, __LINE__, "sd", "connection closed for fd", con->fd);
       }
   }

除了输出日志,这段代码就是调用了connection_close。connection_close做最后的清理工作,包括调用close,将对应的connection放回缓冲池中等。前面刚刚说过,在CON_STATE_ERROR中设置了close_time_ts为cur_ts。在出了CON_STATE_ERROR后,进入CON_STATE_CLOSE,这段时间cur_ts是没有改变的。如果前面的代码中测试缓冲区中没有数据可读,此时const_time_ts是等于cur_ts。也就是说状态机还在CON_CLOSE_STATE这个状态,然后就退出了状态机的大while循环。服务器进入了connection_state_mechine最后面的那个switch语句。在这个switch中,连接对应的fd被加入到fdevent系统中并监听读入事件。
这个时候连接都已经关闭了还有什么能读的啊?别急!细心的读者应该注意到了,到这个时候,服务器仅仅是对连接调用了shutdown函数,没有调用close函数。首先说一下shutdown和close的区别。close作用在socket fd上和作用在其他fd上的效果差不多,都是减少引用计数,当计数为0的时候释放资源,关闭连接。shutdown函数则是针对socket fd的专门函数。shutdown可以关闭socket连接的一个方向,也就是可以只关闭写或者只关闭读(socket连接是全双工的)。另外一个区别就是,如果连接是多个进程共享的,那么在一个进程中调用close不影响其他进程使用连接,因为仅仅是引用计数减少1。而如果一个进程调用了shutdown ,那么,不管三七二十一,系统直接咔嚓掉这个连接,其他进程看到的也是关闭的连接。还有一个区别,调用了close的socket fd,read,write函数不能再从这个fd上读取或发送数据。而调用了shutdown的socket fd,如果缓冲区中还有数据可读,由于此时对于进程而言,socket fd没有关闭,read依然可以从这个fd读数据。由于shutdown仅仅是关闭了连接,不会进行资源的释放,要想释放连接占用的资源,还必须调用close函数。
对于keep_alive的连接,关闭是服务器主动发起的。根据TCP协议,主动发起关闭的一方,其连接将进入TIME_WAIT状态,此时连接所占用的资源没有释放。更悲剧的是要在这个状态待很长时间。。。(默认4分钟)对于高并发的服务器,如果服务器主动关闭大量连接,那么服务器的资源很快就会被用光(端口,内存等),新的连接将无法建立。关于这个TIME_WAIT状态,读者可自行google之,网上有很多介绍的文章以及处理办法。虽然这个TIME_WAIT状态看似会给我们带来很多麻烦,但是,如果没有这个状态我们会更麻烦。。。《UNIX Network Programming Volum1》这本神作中有详细的介绍,有兴趣的读者可以看看。既然麻烦不可避免,那么就尽量将麻烦的影响见到最低。连接占用的资源主要就是端口和内存。端口是没办法的,占用就占用了。但是,内存还是可以节省一点的。前面说了,shutdown之后,我们依然可以把缓冲区的数据读出来。那么,我们把这些数据读出来以后,缓冲区所占用的内存就可以释放了。从而降低了内存的使用。
在CON_STATE_CLOSE中,下面的代码把缓冲区的数据读了出来:

  if (ioctl(con->fd, FIONREAD, &b))
  {
      log_error_write(srv, __FILE__, __LINE__, "ss", "ioctl() failed", strerror(errno));
  }
   if (b > 0)
  {
      char buf[1024];
      log_error_write(srv, __FILE__, __LINE__, "sdd", "CLOSE-read()", con->fd, b);

     read(con->fd, buf, sizeof(buf));
  }
else
   {
       /*
        * nothing to read
        */

     con->close_timeout_ts = 0;
  }

如果没有数据可读,那么设置close_timeout_ts会使连接在后面的代码中被关闭。如果有数据可读,读取数据之后,连接依然处在CON_STATE_CLOSE状态中,连接对应的fd被加入到fdevent系统中监听读事件。如果缓冲区中还有数据,那么在connection_handle_fdevent 函数中,也有上面这段代码,再次运行之。如果数据没有读完,服务器将会重复的在connection_handle_fdevent函数中运行上述代码直到数据读完。随着close_timeout_ts被设置为0,在下次joblist的调度中,状态机将会关闭连接,清理所有资源。
至此,连接正式关闭。之所以这么麻烦,就是由于连接是服务器主动关闭的,会有TIME_WAIT状态的问题。这样处理仅仅在内存上有了一些节省。但是具体效果怎样,这要看系统内核是如何处理连接缓冲区的。如果各位读者了解这方面的内容,还请不吝赐教!
另外,shutdown之后内核中的缓冲区到底会怎样笔者并不是很确定。上面的内容只是根据代码的推断。还是那句话,如果给为读者有什么高见,还行不吝赐教啊。

本文章由 http://www.wifidog.pro/2015/04/13/wifidog-lighttpd-1.html 整理编辑,转载请注明出处

wifidog认证自带http服务器Lighttpd1.4.20源码分析之状态机(3)返回response

好久没顾这个了,最近比较清闲,重新拾掇一下,有始有终。
  回到正题,前一篇介绍完了请求的处理,先面lighttpd将会把处理的结果返回给客户端。状态机进入CON_STATE_RESPONST_START。在这个状态中,服务器主要的工作在函数connection_handle_write_prepare。这个函数不算复杂,主要是根据客户端请求的method来设置response的headers,其实就是设置“Content-Length”的值。下面是函数代码,做了一些删减:

static int connection_handle_write_prepare(server * srv, connection * con)
{
   if (con->mode == DIRECT)
   {
       /*
        * static files
        */
       switch (con->request.http_method)
       {
       case HTTP_METHOD_GET:
       case HTTP_METHOD_POST:
       case HTTP_METHOD_HEAD:
       case HTTP_METHOD_PUT:
       case HTTP_METHOD_MKCOL:
       case HTTP_METHOD_DELETE:
       case HTTP_METHOD_COPY:
       case HTTP_METHOD_MOVE:
       case HTTP_METHOD_PROPFIND:
       case HTTP_METHOD_PROPPATCH:
       case HTTP_METHOD_LOCK:
       case HTTP_METHOD_UNLOCK:
           break;
       case HTTP_METHOD_OPTIONS:
           /*
            * 400 is coming from the request-parser BEFORE uri.path is set
            * 403 is from the response handler when noone else catched it
            * */
           if ((!con->http_status || con->http_status == 200)
               && con->uri.path->used && con->uri.path->ptr[0] != '*')
           {
               response_header_insert(srv, con, CONST_STR_LEN("Allow"),
                  CONST_STR_LEN("OPTIONS, GET, HEAD, POST"));

               con->response.transfer_encoding &= ~HTTP_TRANSFER_ENCODING_CHUNKED;
               con->parsed_response &= ~HTTP_CONTENT_LENGTH;

               con->http_status = 200;
               con->file_finished = 1;

               chunkqueue_reset(con->write_queue);
           }
           break;
       default:
           switch (con->http_status)
           {
           case 400:            /* bad request */
           case 414:            /* overload request header */
           case 505:            /* unknown protocol */
           case 207:            /* this was webdav */
               break;
           default:
               con->http_status = 501;
               break;
           }
           break;
       }
   }

   if (con->http_status == 0)
   {
       con->http_status = 403;
   }

   switch (con->http_status)
   {
   case 204:                    /* class: header only */
   case 205:
   case 304:
       /*
        * disable chunked encoding again as we have no body
        */
       con->response.transfer_encoding &= ~HTTP_TRANSFER_ENCODING_CHUNKED;
       con->parsed_response &= ~HTTP_CONTENT_LENGTH;
       chunkqueue_reset(con->write_queue);

       con->file_finished = 1;
       break;
   default:                    /* class: header + body */
       if (con->mode != DIRECT)
           break;

       /*
        * only custom body for 4xx and 5xx
        */
       if (con->http_status < 400 || con->http_status >= 600)
           break;

       con->file_finished = 0;
       buffer_reset(con->physical.path);

       /*
        * try to send static errorfile
        */
       if (!buffer_is_empty(con->conf.errorfile_prefix))
       {
        //设置对应的错误提示文件
       }

       if (!con->file_finished)
       {
           //没有对应的错误提示文件,设置默认错误提示。
       }
       break;
   }

   if (con->file_finished)
   {
       /*
        * we have all the content and chunked encoding is not used, set a
        * content-length
        */
       if ((!(con->parsed_response & HTTP_CONTENT_LENGTH)) &&
           (con->response.transfer_encoding & HTTP_TRANSFER_ENCODING_CHUNKED) == 0)
       {
           off_t qlen = chunkqueue_length(con->write_queue);
           /**
            * The Content-Length header only can be sent if we have content:
            * - HEAD doesn't have a content-body (but have a content-length)
            * - 1xx, 204 and 304 don't have a content-body (RFC 2616 Section 4.3)
            *
            * Otherwise generate a Content-Length header as chunked encoding is not
            * available
            */
           if ((con->http_status >= 100 && con->http_status < 200) ||
               con->http_status == 204 || con->http_status == 304)
           {
               data_string *ds;
               /*
                * no Content-Body, no Content-Length
                */
               if (NULL != (ds = (data_string *) array_get_element(con->response.headers, "Content-Length")))
               {
                   buffer_reset(ds->value);    /* Headers with empty values
                                                * are ignored for output */
               }
           }
           else if (qlen > 0 || con->request.http_method != HTTP_METHOD_HEAD)
           {
               /*
                * qlen = 0 is important for Redirects (301, ...) as they MAY
                * have a content. Browsers are waiting for a Content otherwise
                */
               buffer_copy_off_t(srv->tmp_buf, qlen);

               response_header_overwrite(srv, con, CONST_STR_LEN("Content-Length"), CONST_BUF_LEN(srv->tmp_buf));
           }
       }
   }
   else
   {
       /**
        * the file isn't finished yet, but we have all headers
        *
        * to get keep-alive we either need:
        * - Content-Length: ... (HTTP/1.0 and HTTP/1.0) or
        * - Transfer-Encoding: chunked (HTTP/1.1)
        */

       if (((con->parsed_response & HTTP_CONTENT_LENGTH) == 0) &&
           ((con->response.transfer_encoding & HTTP_TRANSFER_ENCODING_CHUNKED) == 0))
       {
           con->keep_alive = 0;
       }

       /**
        * if the backend sent a Connection: close, follow the wish
        *
        * NOTE: if the backend sent Connection: Keep-Alive, but no Content-Length, we
        * will close the connection. That's fine. We can always decide the close
        * the connection
        *
        * FIXME: to be nice we should remove the Connection: ...
        */
       if (con->parsed_response & HTTP_CONNECTION)
       {
           /*
            * a subrequest disable keep-alive although the client wanted it
            */
           if (con->keep_alive && !con->response.keep_alive)
           {
               con->keep_alive = 0;
           }
       }
   }

   if (con->request.http_method == HTTP_METHOD_HEAD)
   {
       /**
        * a HEAD request has the same as a GET
        * without the content
        */
       con->file_finished = 1;

       chunkqueue_reset(con->write_queue);
       con->response.transfer_encoding &= ~HTTP_TRANSFER_ENCODING_CHUNKED;
   }

   http_response_write_header(srv, con);

   return 0;
}

首先,该函数判断连接的模式(mode)是否是DIRECT,如果是,说明连接没有经过插件处理,是由服务器自身处理的。这里判断连接的请求method,如果是OPTION,则设置Allow的值。同时清空write_queue,因为没有数据需要返回。 接着,在下面这个switch语句中,比较http_status的值,如果为204,205,304,说明服务器不需要给客户端返回文件,仅仅返回 response中headers及其之前的部分。这里和前面处理OPTION方法都设置con->file_finished为1。 file_finished用来标记客户端请求的静态文件是否已经发送完了(这个file_finished的含义比较模糊,目前还没搞清楚是表示文件发 送完毕,还是要发送的文件设置完毕可以发送。。。也有可能是个bug。。。如果各位读者有什么高见,还望不吝赐教!)。这两处都不需要给客户端发送文件, 因此将其设置为1,发送程序将直接跳过文件的发送。switch的default分支处理4xx错误,返回相应的错误提示文件。
  出了switch语句之后,接着是一个if判断file_finished的值。如果值为1,说明不需要给客户端返回文件数据。对于1xx,204和 304状态,将Content-Length设置为空值。如果method是HEAD,那么服务器可能需要返回一些数据,这时候要设置对应的 Content-Length。如果file_finished的值为0,那么要设置一下keep_alive的值。在 connection_handle_write_prepare函数的最后,调用http_response_write_header将 headers写入write_queue,等待返回给客户端。如果一切顺利,那么状态机进入CON_STATE_WRITE。
  由于数据可能不会一次写完,尤其是发送大文件的时候。因此,在CON_STATE_WRITE状态中首先判断write_queue时候为空,也就是有没 有数据还没有发送。同时判断连接是否可写。如果有数据且可写,那么调用connection_handle_write发送数据。如果没有数据可写或者连 接不可写,那么会退出switch(con->state)这个语句。同时,由于状态机状态没有发生改变,switch后面的if语句使得服务器退 出了大while循环,进入循环后面的小switch(con->state)语句。这个switch语句在前面已经介绍过。在这里,进入 CON_STATE_WRITE分支,如果有数据可写且连接可写且没有达到流量限制,那么在fdevent中注册这个连接,否则,删除这个连接。
  下面我们进入connection_handle_write函数,看看有数据可写且连接可写的情况。connection_handle_write函 数会首先在switch语句中调用network_write_chunkqueue函数。顾名思义,这个函数就是将write_queue中的数据写回 给客户端的。函数network_write_chunkqueue首先判断当前连接的流量是否超过了限制,如果是,则不发送任何数据,直接将连接加到作 业列表(joblist)中,让其他连接发送数据。如果没有超限,那么首先设置TCP_CORK选项。这个选项可以将多个write调用的数据一起发送, 提高发送效率。有关TCP_CORK的内容读者可自行google之。接下来就是调用srv->network_backend_wirte()函 数进行真正的写数据了。这个函数的真正定义有多个,在network_*.c文件中。服务器在network.c的network_init函数中会根据 当前的运行环境设置不同的值。为了提高服务器的效率,不同的OS会提供一些不同的方法,提高发送文件的速度。通过传统的先read在write的方法,需 要4次数据拷贝(从磁盘到内核缓冲区,从内核缓冲区到用户缓冲区,从用户缓冲区到网络接口的内核缓冲区,最后,从网络接口的内核缓冲区到网络设备缓冲 区。),OS会提供一些特定的方法来减少拷贝的次数,具体读者可以google“直接IO”,有不少介绍这个的文章。为了充分利用这些方法来提高服务器的 性能,lighttpd在不同的OS上都会去使用这些特定的接口,因此就需要多个network_backend_wirte函数的实现。这些实现基本上 大同小异,因此这里只介绍network_write.c中的实现。函数的主体是个大循环,遍历所有的chunk。如果chunk的类型是 MEM_CHUNK,那么这个chunk中的数据是在内存中的,直接调用write或者windows下的send函数发送数据。如果是 FILE_CHUNK类型,说明这个chunk表示的是一个文件,那么如果运行环境有mmap函数,就使用mmap映射文件并发送,否则就read在 write。如果这个chunk发送完了,那么继续发送下一个chunk。如果没有发送完(chunk_finished=0),那么退出循环,接着也就 退出了这个函数。服务器这时返回到network_write_chunkqueue中,下面做一些统计工作,再一次检查该连接的流量是否超限。最后服务 器返回到connection_handle_write中。如果network_write_chunkqueue返回-1,表示服务器出错。状态机进 入CON_STATE_ERROR。如果返回-2,则客户端关闭连接,状态机也进入CON_STATE_ERROR。返回0表示发送完毕,进入下一个状 态。返回1说明数据没有发送完,标记is_wirtable为0。
  从connection_handler_write函数返回后,如果数据没有发送完毕,那么状态机还在
CON_STATE_WRITE状态,接着连接被加到fdevent系统中,等待下一次数据发送。重复上述过程知道发送完毕或出错。
  如果数据发送完毕,状态机进入CON_STATE_RESPONSE_END状态。在这个状态中,服务器首先调用 plugins_call_handle_request_done通知所有插件连接处理完毕。然后判断是否保持连接,如果保持,将状态机设置为 CON_STATE_REQUEST_START。如果不保持,那么先调用plugins_call_handle_connection_close通 知所有插件连接关闭。然后关闭连接。最后,重置con,清除前一次请求的数据。
  至此,请求处理结束。总的来说,返回response的过程还算直接,没有多少难懂的地方。比较不好懂的地方都是关于http协议中一些情况的细节处理,读者可以参照rfc理解。
下面一片文章将会分析一些错误处理过程。

本文章由 http://www.wifidog.pro/2015/04/10/wifidog%E8%AE%A4%E8%AF%81lighttpd-1.html 整理编辑,转载请注明出处

wifidog认证自带http服务器Lighttpd1.4.20源码分析之状态机(1)---状态机总览

前面讲了lighttpd的fdevent系统,从这一篇开始,我们将进入lighttpd的状态机。状态机可以说是lighttpd最核心的部分。lighttpd将一个连接在不同的时刻分成不同的状态,状态机则根据连接当前的状态,决定要对连接进行的处理以及下一步要进入的状态。下面这幅图描述了lighttpd的状态机:
1.png

(在lighttpd源码文件夹中的doc目录中有个state.dot文件,通过dot命令可以生成上面的图:dot -Tpng state.dot -o state.png。)
图中的各个状态对应于下面的一个枚举类型:

typedef enum
{
    CON_STATE_CONNECT,             //connect 连接开始
     CON_STATE_REQUEST_START,     //reqstart 开始读取请求
     CON_STATE_READ,             //read 读取并解析请求
     CON_STATE_REQUEST_END,         //reqend 读取请求结束
     CON_STATE_READ_POST,         //readpost 读取post数据
     CON_STATE_HANDLE_REQUEST,     //handelreq 处理请求
    CON_STATE_RESPONSE_START,     //respstart 开始回复
    CON_STATE_WRITE,             //write 回复写数据
    CON_STATE_RESPONSE_END,     //respend 回复结束
    CON_STATE_ERROR,             //error 出错
    CON_STATE_CLOSE             //close 连接关闭
} connection_state_t;

在每个连接中都会保存这样一个枚举类型变量,用以表示当前连接的状态。connection结构体的第一个成员就是这个变量。
在连接建立以后,在connections.c/connection_accpet()函数中,lighttpd会调用connection_set_state()函数,将新建立的连接的状态设置为CON_STATE_REQUEST_START。在这个状态中,lighttpd记录连接建立的时间等信息。
下面先来说一说整个状态机的核心函数───connections.c/ connection_state_machine()函数。函数很长,看着比较吓人。。。其实,这里我们主要关心的是函数的主体部分:while循环和其中的那个大switch语句,删减之后如下:

int connection_state_machine(server * srv, connection * con)
{
    int done = 0, r;
    while (done == 0)
    {
        size_t ostate = con -> state;
        int b;
        //这个大switch语句根据当前状态机的状态进行相应的处理和状态转换。
        switch (con->state)
        {
        case CON_STATE_REQUEST_START:    /* transient */
        case CON_STATE_REQUEST_END:    /* transient */
        case CON_STATE_HANDLE_REQUEST:
        case CON_STATE_RESPONSE_START:
        case CON_STATE_RESPONSE_END:    /* transient */
        case CON_STATE_CONNECT:
        case CON_STATE_CLOSE:
        case CON_STATE_READ_POST:
        case CON_STATE_READ:
        case CON_STATE_WRITE:
        case CON_STATE_ERROR:    /* transient */
        default:
            break;
        }//end of switch(con -> state) ...
        if (done == -1)
        {
            done = 0;
        }
        else if (ostate == con->state)
        {
            done = 1;
        }
    }
    return 0;
}

程序进入这个函数以后,首先根据当前的状态进入对应的switch分支执行相应的动作。然后,根据情况,进入下一个状态。跳出switch语句之后,如果连接的状态没有改变,说明连接读写数据还没有结束,但是需要等待IO事件,这时,跳出循环,等待IO事件。对于done==-1的情况,是在CON_STATE_HANDLE_REQUEST状态中的问题,后面再讨论。如果在处理的过程中没有出现需要等待IO事件的情况,那么在while循环中,连接将被处理完毕并关闭。
接着前面的话题,在建立新的连接以后,程序回到network.c/network_server_handle_fdevent()函数中的for循环在中后,lighttpd对这个新建立的连接调用了一次connection_state_machine()函数。如果这个连接没有出现需要等待IO事件的情况,那么在这次调用中,这个连接请求就被处理完毕。但是实际上,在连接第一次进入CON_STATE_READ状态时,几乎是什么都没做,保持这个状态,然后跳出了while循环。在循环后面,还有一段代码:

switch (con->state)
    {
    case CON_STATE_READ_POST:
    case CON_STATE_READ:
    case CON_STATE_CLOSE:
        fdevent_event_add(srv->ev, &(con->fde_ndx), con->fd, FDEVENT_IN);
        break;
    case CON_STATE_WRITE:
        if (!chunkqueue_is_empty(con->write_queue) &&
            (con->is_writable == 0)&& (con->traffic_limit_reached == 0))
        {
            fdevent_event_add(srv->ev, &(con->fde_ndx), con->fd, FDEVENT_OUT);
        }
        else
        {
            fdevent_event_del(srv->ev, &(con->fde_ndx), con->fd);
        }
        break;
    default:
        fdevent_event_del(srv->ev, &(con->fde_ndx), con->fd);
        break;
    }

这段代码前面已经介绍过,这个连接的连接fd被加入到fdevent系统中,等待IO事件。当有数据可读的时候,在main函数中,lighttpd调用这个fd对应的handle函数,这里就是connection_handle_fdevent()函数。这个函数一开始将连接加入到了joblist(作业队列)中。前面已经说过,这个函数仅仅做了一些标记工作。程序回到main函数中时,执行了下面的代码:

for (ndx = 0; ndx < srv->joblist->used; ndx++)
        {
            connection *con = srv->joblist->ptr[ndx];
            handler_t r;
            connection_state_machine(srv, con);
            switch (r = plugins_call_handle_joblist(srv, con))
            {
            case HANDLER_FINISHED:
            case HANDLER_GO_ON:
                break;
            default:
                log_error_write(srv, __FILE__, __LINE__, "d", r);
                break;
            }
            con->in_joblist = 0;//标记con已经不在队列中。
        }

这段代码就是对joblist中的所有连接,依次对其调用connection_state_machine()函数。在这次调用中,连接开始真正的读取数据。lighttpd调用connection_handle_read_state()函数读取数据。在这个函数中,如果数据读取完毕或出错,那么连接进入相应的状态,如果数据没有读取完毕那么连接的状态不变。(PS:在connection_handle_read_state()读取的数据其实就是HTTP头,在这个函数中根据格式HTTP头的格式判断HTTP头是否已经读取完毕,包括POST数据。)上面说到,在connection_state_machile()函数的while循环中,如果连接的状态没有改变,那么将跳出循环。继续等待读取数据。
读取完数据,连接进入CON_STATE_REQUEST_END。在这个状态中lighttpd对HTTP头进行解析。根据解析的结果判断是否有POST数据。如果有,则进入CON_STATE_READ_POST状态。这个状态的处理和CON_STATE_READ一样。如果没有POST数据,则进入CON_STATE_HANDLE_REQUEST状态。在这个状态中lighttpd做了整个连接最核心的工作:处理连接请求并准备response数据。
处理完之后,连接进入CON_STATE_RESPONSE_START。在这个状态中,主要工作是准备response头。准备好后,连接进入CON_STATE_WRITE状态。显然,这个状态是向客户端回写数据。第一次进入WRITE状态什么都不做,跳出循环后将连接fd加入fdevent系统中并监听写事件(此时仅仅是修改要监听的事件)。当有写事件发生时,和读事件一样调用connection_handle_fdevent函数做标记并把连接加入joblist中。经过若干次后,数据写完。连接进入CON_STATE_RESPONSE_END状态,进行一些清理工作,判断是否要keeplive,如果是则连接进入CON_STATE_REQUEST_START状态,否则进入CON_STATE_CLOSE。进入CLOSE后,等待客户端挂断,执行关闭操作。这里顺便说一下,在将fd加到fdevent中时,默认对每个fd都监听错误和挂断事件。
连接关闭后,connection结构体并没有删除,而是留在了server结构体的connecions成员中。以便以后再用。
关于joblist有一个问题。在每次将连接加入的joblist中时,通过connection结构体中的in_joblist判断是否连接已经在joblist中。但是,在joblist_append函数中,并没有对in_joblist进行赋值,在程序的运行过程中,in_joblist始终是0.也就是说,每次调用joblist_append都会将连接加入joblist中,不论连接是否已经加入。还有,当连接已经处理完毕后,程序也没有将对应的connection结构体指针从joblist中删除,虽然这样不影响程序运行,因为断开后,对应的connection结构体的状态被设置成CON_STATE_CONNECT,这个状态仅仅是清理了一下chunkqueue。但这将导致joblist不断增大,造成轻微的内存泄漏。在最新版(1.4.26)中,这个问题依然没有修改。
就先说到这。后面将详细介绍各个状态的处理。

本文章由 http://www.wifidog.pro/2015/04/10/wifidog%E8%AE%A4%E8%AF%81http.html 整理编辑,转载请注明出处

wifidog认证优缺点wifidog原理

portal认证方式有多重,我们选择了十分普遍额开源项目wifidog,支持openwrt,用户群体大,资料较完善,中文资料多。
主要优点:

  1. 开源(https://github.com/wifidog github,上提供了源码及基于php的认证网关源码)
  2. 国内使用wifidog的情况比较普遍,二次开发更容易。
  3. 代码可移植性高,各种平台几乎都不受限制

(总结:低成本,易上手。)

目前也存在一定的缺点

  1. 通过实际抓包发现,心跳包不断的检查用户在线情况,网关服务器性能开销较大。
  2. 基于iptables,协议繁琐,性能比较差。
  3. 隐私问题,没有加密url直接传递含隐私的信息。

下面来看下wifidog工作机制:
工作机制
/ping 心跳接口

"GET /ping/?gw_id=网关id&sys_uptime=1183&sys_memfree=105884&sys_load=0.14&wifidog_uptime=1169 HTTP/1.0"

/login 新用户认证跳转页面

GET /login/?gw_address=111&gw_port=111&gw_id=111&mac=88:72:0d:f2:88:29&url=url HTTP/1.1

/auth 用户检测

/auth/?stage=counters&ip=192.168.10.81&mac=88:72:0d:f2:a8:29&token=85ea71f2484b2c52fee&incoming=5638570&outgoing=722214&gw_id=111 HTTP/1.0

本文章由 http://www.wifidog.pro/2015/04/09/wifidog%E8%AE%A4%E8%AF%81%E4%BC%98%E7%BC%BA%E7%82%B9.html 整理编辑,转载请注明出处